Fractional Mechanical Oscillator Equation

Abstract

The linearly damped free fractional mechanical oscillator equation is solved by Laplace Transform method and series solution technique. In both methods, the solution is expressed in terms of the Mittag-Leffler function defined by The Rieman-Liouville and Caputo’s formulations of the fractional differentiation are both considered. The parameters carry over their meanings from discrete calculus as the damping coefficient and circular frequency respectively, is the order of the fractional derivative. The damping coefficient is a measure of resistive force present in the medium through which the oscillator vibrates while the resonant frequency is its natural frequency in the absence of external excitations.


Cite this article: Project Topics. (2021). Fractional Mechanical Oscillator Equation. Retrieved October 25, 2021, from https://www.projecttopics.org/fractional-mechanical-oscillator-equation.html.



Copyright © 2021 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


WeCreativez WhatsApp Support
We are here to answer your questions. Ask us anything!
Hi, how can we help?